CONTENTS

1. Common-Emitter fixed-bias configuration
2. Voltage divider bias
3. CE Emitter bias
4. Emitter-follower configuration
5. Common-base configuration
6. Collector-feedback configuration
7. Hybrid equivalent circuit and model
BJT Small Signal Analysis

• r_e transistor model – employs a diode and controlled current source to duplicate the behavior of a transistor in the region of interest.

• The r_e and hybrid models will be used to analyze small-signal AC analysis of standard transistor network configurations.

 Ex: Common-base, common-emitter and common-collector configurations.

• The network analyzed represent the majority of those appearing in practice today.

Asutosh Kar, IIIT Bhubaneswar
AC equivalent of a network is obtained by:

1. Setting all DC sources to zero
2. Replacing all capacitors by s/c equiv.
3. Redraw the network in more convenient and logical form
Transistor circuit under examination in this introductory discussion.

Asutosh Kar, IIIT Bhubaneswar
The network of Fig. 5.3 following removal of the dc supply and insertion of the short-circuit equivalent for the capacitors.

Asutosh Kar, IIIT Bhubaneswar
Circuit of Fig. 5.4 redrawn for small-signal ac analysis.
The input (V_i) is applied to the base and the output (V_o) is from the collector.

The Common-Emitter is characterized as having high input impedance and low output impedance with a high voltage and current gain.
Common-Emitter (CE) Fixed-Bias Configuration

Removing DC effects of V_{cc} and Capacitors

Asutosh Kar, IIIT Bhubaneswar
Common-Emitter (CE) Fixed-Bias Configuration

re Model

Determine β, r_e, and r_o:

β and r_o: look in the specification sheet for the transistor or test the transistor using a curve tracer.

r_e: calculate r_e using dc analysis:

$$r_e = \frac{26mV}{I_S}$$

Asutosh Kar, IIIT Bhubaneswar
Impedance Calculations

Common-Emitter (CE) Fixed-Bias Configuration

Input Impedance:

\[Z_i = R_B \parallel \beta r_e \]

\[Z_i \approx \beta r_e \quad \text{if} \quad R_B \geq 10 \beta r_e \]

Output Impedance:

\[Z_o = R_C \parallel r_o \]

\[Z_o \approx R_c \quad \text{if} \quad r_o \geq 10 R_c \]

Asutosh Kar, IIIT Bhubaneswar
Gain Calculations

Voltage Gain (A_v):

$$A_v = \frac{V_o}{V_i} = - \frac{(R_C \parallel r_o)}{r_e}$$

$$A_v = -\frac{R_C}{r_e} / r_o \geq 10R_C$$

Current Gain (A_i):

$$A_i = \frac{I_o}{I_i} = \frac{\beta R_B r_o}{(r_o + R_C)(R_B + \beta r_e)}$$

$$A_i \approx \beta / r_o \geq 10R_C, R_B \geq 10\beta r_e$$

Current Gain from Voltage Gain:

$$A_i = -A_v \frac{Z_i}{R_C}$$

Asutosh Kar, IIIT Bhubaneswar
Common-Emitter (CE) Fixed-Bias Configuration

Voltage Gain

\[A_v = \frac{V_o}{V_i} \]

\[V_o = -\beta I_b (R_C \parallel r_o) \]

\[V_i = I_b \beta r_e \]

\[A_v = \frac{-\beta I_b (R_C \parallel r_o)}{I_b \beta r_e} \]

\[= \frac{(R_C \parallel r_o)}{r_e} \]

if \(r_o = \infty \Omega \) or \(\geq 10R_C \)

\[A_v = \frac{R_C}{r_e} \]

Asutosh Kar, IIIT Bhubaneswar
Current gain

The current gain is determined by applying the current-divider rule to the input and output circuits

\[I_o = \frac{r_o \beta I_b}{r_o + R_C} \text{ and } I_o = \frac{r_o \beta}{I_b} \frac{1}{r_o + R_C} \]

\[I_b = \frac{R_B I_i}{R_B + \beta r_e} \text{ and } I_b = \frac{R_B}{I_i} \frac{1}{R_B + \beta r_e} \]

\[A_i = \frac{I_o}{I_i} = \left(\frac{I_o}{I_b} \right) \left(\frac{I_b}{I_i} \right) = \left(\frac{r_o \beta}{r_o + R_C} \right) \left(\frac{R_B}{R_B + \beta r_e} \right) \]

\[\therefore A_i = \frac{I_o}{I_i} = \frac{r_o \beta R_B}{(r_o + R_C)(R_B + \beta r_e)} \]

if \(r_o \geq 10R_C \) and \(R_B \geq 10\beta r_e \),

\[\therefore A_i = \frac{I_o}{I_i} \approx \frac{r_o \beta R_B}{(r_o)(R_B)} = \beta \]

or we can use this equation too

\[\therefore A_i = -A_v \frac{Z_i}{R_C} \]

Asutosh Kar, IIIT Bhubaneswar
The phase relationship between input and output is 180 degrees. The negative sign used in the voltage gain formulas indicates the inversion.
CE – Voltage-Divider Bias Configuration

Asutosh Kar, IIIT Bhubaneswar
You still need to determine β, re, and ro.

Asutosh Kar, IIIT Bhubaneswar
Impedance Calculations

Input Impedance:

\[
R' = R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2}
\]

\[
Z_{i} = R' \parallel B r_{e}
\]

Output Impedance:

\[
Z_{o} \approx R_c \parallel r_o
\]

\[
Z_{o} \approx R_c / r_o \geq 10R_c
\]

Asutosh Kar, IIIT Bhubaneswar
Gain Calculations

Voltage Gain (Av):

\[A_v = \frac{V_o}{V_i} = -\frac{R_C \parallel r_o}{r_e} \]

\[A_v = \frac{V_o}{V_i} \approx -\frac{R_C}{r_e} \quad \text{if} \quad r_o \geq 10R_C \]

Current Gain (Ai):

\[A_i = \frac{I_o}{I_i} = \frac{\beta R' r_o}{(r_o + R_C)(R' + \beta r_e)} \]

\[A_i = \frac{I_o}{I_i} \approx \frac{\beta R'}{R' + \beta r_e} \quad \text{if} \quad r_o \geq 10R_C \]

Current Gain from Voltage Gain:

\[A_i = \frac{I_o}{I_i} \approx \beta \quad \text{if} \quad r_o \geq 10R_C, R' \geq 10\beta r_e \]

\[A_i = -A_v \frac{Z_i}{R_C} \]

Asutosh Kar, IIIT Bhubaneswar
Voltage Gain

\[V_O = - (\beta I_b)(R_C \parallel r_o) \]

\[I_b = \frac{V_i}{\beta r_e} \]

\[V_o = -\beta \left(\frac{V_i}{\beta r_e} \right)(R_C \parallel r_o) \]

\[\therefore A_v = \frac{-(R_C \parallel r_o)}{r_e} \]

if \(r_o = \infty \Omega \) or \(\geq 10R_C \) \(\therefore A_v = \frac{-R_C}{r_e} \)
Current gain

since the network is so similar to that common - emitter fixed - bias configuration, except for the R', the equation for the current gain will have the same format.

\[R' = R_1 \parallel R_2 = R_B \]

\[A_i = \frac{I_o}{I_i} = \frac{\beta R' r_o}{(r_o + R_C)(R' + \beta r_e)} \]

for \(r_o \geq 10R_C \),

\[A_i = \frac{I_o}{I_i} \approx \frac{\beta R' r_o}{r_o(R' + \beta r_e)} \]

\[\approx \frac{\beta R'}{(R' + \beta r_e)} \]

Asutosh Kar, IIIT Bhubaneswar
And if $R' \geq 10 \beta r_e$,

$$A_i = \frac{I_o}{I_i} = \frac{\beta R'}{R'}$$

$$\therefore A_i = \frac{I_o}{I_i} \approx \beta$$

as an option

$$\therefore A_i = -A_v \frac{Z_i}{R_C}$$
A CE amplifier configuration will always have a phase relationship between input and output is 180 degrees. This is independent of the DC bias.
CE Emitter-Bias Configuration

Unbypassed R_E

Asutosh Kar, IIIT Bhubaneswar
Again you need to determine β, re.

Asutosh Kar, IIIT Bhubaneswar
Impedance Calculations

Input Impedance:

\[Z_b = \beta r_e + (\beta + 1)R_E \]

\[Z_b \approx \beta (r_e + R_E) \]

\[Z_b \approx \beta R_E \quad \text{if} \quad R_E \gg r_e \]

Output Impedance:

\[Z_o = R_C \]

\[Z_i = R_B \parallel Z_b \]

Asutosh Kar, IIIT Bhubaneswar
Defining the input impedance of a transistor with an unbypassed emitter resistor

Applying KVL to the input side:

\[V_i = I_b \beta r_e + I_e R_E \]

\[V_i = I_b \beta r_e + (\beta + 1)I_b R_E \]

\[\therefore Z_b = \frac{V_i}{I_b} = \beta r_e + (\beta + 1)R_E \]

since \(\beta \) is normally greater than 1,

\[\therefore Z_b \approx \beta r_e + \beta R_E \]

since \(R_E \) is much greater than \(r_e \), eqn above can be reduced to

\[\therefore Z_b \approx \beta R_E \]
Voltage Gain (Av):

\[
A_v = \frac{V_o}{V_i} = -\frac{\beta R_C}{Z_b}
\]

Current Gain (Ai):

\[
A_i = \frac{I_o}{I_i} = \frac{\beta R_B}{R_B + Z_b}
\]

Current Gain from Voltage Gain:

\[
A_i = -A_v \frac{Z_i}{R_C}
\]

Asutosh Kar, IIIT Bhubaneswar
CE Emitter-Bias Configuration

Voltage Gain

\[I_b = \frac{V_i}{Z_b} \]

\[V_o = -I_o R_C = -\beta I_b R_C \]

\[= -\beta \left(\frac{V_i}{Z_b} \right) R_C \]

\[A_v = \frac{V_o}{V_i} = -\frac{\beta R_C}{Z_b} \]

Substituting \(Z_b = \beta (r_e + R_E) \) gives

\[A_v = \frac{V_o}{V_i} = -\frac{R_C}{r_e + R_E} \]

And for the approximation \(Z_b \cong \beta R_E \)

\[A_v = \frac{V_o}{V_i} = -\frac{R_C}{R_E} \]

Asutosh Kar, IIIT Bhubaneswar
CE Emitter-Bias Configuration

Current Gain

The magnitude of R_B is often too close to Z_b to permit the approximation $I_b = I_i$. Applying the current-divider rule to the input circuit will result in:

$$I_b = \frac{R_B I_i}{R_B + Z_b}$$

$$\frac{I_b}{I_i} = \frac{R_B}{R_B + Z_b}$$

$$I_o = \beta I_b$$

$$\frac{I_o}{I_b} = \beta$$

$$\therefore A_i = \frac{I_o}{I_i} = \frac{I_o}{I_b} \frac{I_b}{I_i} = \beta \frac{R_B}{R_B + Z_b}$$

$$\therefore A_i = -A_v \frac{Z_i}{R_c}$$

Asutosh Kar, IIIT Bhubaneswar
Phase Relationship

A CE amplifier configuration will always have a phase relationship between input and output is 180 degrees. This is independent of the DC bias.

Asutosh Kar, IIIT Bhubaneswar
This is the same circuit as the CE fixed-bias configuration and therefore can be solved using the same re model.
You may recognize this as the Common-Collector configuration. Indeed they are the same circuit.

Note the input is on the base and the output is from the emitter.

Asutosh Kar, IIIT Bhubaneswar
You still need to determine β and r_e.

Asutosh Kar, IIIT Bhubaneswar
Emitter-Follower Configuration

Impedance Calculations

Input Impedance:

\[
Z_i = R_B \parallel Z_b
\]

\[
Z_b = \beta r_e + (\beta + 1)R_E
\]

\[
Z_b \approx \beta (r_e + R_E)
\]

Asutosh Kar, IIIT Bhubaneswar
Calculation for the current I_e

$$I_b = \frac{V_i}{Z_b}$$

$$I_e = (\beta + 1)I_b = (\beta + 1) \frac{V_i}{Z_b}$$

Substituting for Z_b gives

$$I_e = \frac{(\beta + 1)V_i}{\beta r_e + (\beta + 1)R_E}$$

$$= \frac{V_i}{\beta r_e / (\beta + 1) + R_E} \quad \text{but } (\beta + 1) \approx \beta$$

And $\frac{\beta r_e}{(\beta + 1)} \approx \frac{\beta r_e}{\beta} = r_e$

$$\therefore I_e = \frac{V_i}{r_e + R_E}$$

Asutosh Kar, IIIT Bhubaneswar
Emittor-Follower Configuration

Impedance Calculations (cont’d)

Output Impedance:

Defining the output impedance for the emitter follower configuration

\[I_e = \frac{V_i}{r_e + R_E} \]

\[Z_o = R_E \parallel r_e \]

\[Z_o \approx r_e \quad / \quad R_E \gg r_e \]

Asutosh Kar, IIIT Bhubaneswar
Gain Calculations

Emitter-Follower Configuration

Voltage Gain (A_v):

\[A_v = \frac{V_o}{V_i} = \frac{R_E}{R_E + r_e} \]

\[A_v = \frac{V_o}{V_i} \approx 1 \quad / \quad R_E >> r_e, R_E + r_e \approx R_E \]

Current Gain (A_i):

\[A_i \approx -\frac{\beta R_B}{R_B + Z_b} \]

Current Gain from Voltage Gain:

\[A_i = -A_v \frac{Z_i}{R_E} \]

Asutosh Kar, IIIT Bhubaneswar
Voltage gain

\[V_o = \frac{R_E V_i}{R_E + r_e} \]

\[\therefore A_v = \frac{V_o}{V_i} = \frac{R_E}{R_E + r_e} \]

\[R_E \text{ usually much greater than } r_e, \]
\[R_E + r_e \approx R_E \]

\[\therefore A_v = \frac{V_o}{V_i} \approx 1 \]

Asutosh Kar, IIIT Bhubaneswar
Emitter-Follower Configuration

Current Gain

\[
I_b = \frac{R_B I_i}{R_B + Z_b}
\]

\[
I_b = R_B
I_i = \frac{R_B}{R_B + Z_b}
\]

\[
I_o = -I_e = -(\beta + 1)I_b
\]

\[
\frac{I_o}{I_b} = -(\beta + 1)
\]

\[
A_i = \frac{I_o}{I_i} = \frac{I_o}{I_b} \frac{I_b}{I_i} = -(\beta + 1) \frac{R_B}{R_B + Z_b}
\]

since \((\beta + 1) \cong \beta\),

\[
\therefore A_i \cong -\frac{\beta R_B}{R_B + Z_b}
\]

or \[
A_i = -A_y \frac{Z_i}{R_E}
\]

Asutosh Kar, IIIT Bhubaneswar
Emitter-Follower Configuration

Phase Relationship

A CC amplifier or Emitter Follower configuration has no phase shift between input and output.
The input (V_i) is applied to the emitter and the output (V_o) is from the collector.

The Common-Base is characterized as having low input impedance and high output impedance with a current gain less than 1 and a very high voltage gain.
You will need to determine α and re.

Asutosh Kar, IIIT Bhubaneswar
Common-Base (CB) Configuration

Impedance Calculations

Input Impedance:

\[Z_i = R_E \parallel r_e \]

Output Impedance:

\[Z_o = R_C \]

Asutosh Kar, IIIT Bhubaneswar
Common-Base (CB) Configuration

Gain Calculations

Voltage Gain (A_v):

$$A_v = \frac{V_o}{V_i} = \frac{\alpha R_C}{r_e} \approx \frac{R_C}{r_e}$$

Current Gain (A_i):

$$A_i = \frac{I_o}{I_i} = -\alpha \approx -1$$

Asutosh Kar, IIIT Bhubaneswar
Common-Base (CB) Configuration

Voltage & Current gain

\[V_o = -I_o R_C = -(-I_c R_C) \]
\[= \alpha I_e R_C \]
\[I_e = \frac{V_i}{r_e} \]
\[V_o = \alpha \left(\frac{V_i}{r_e} \right) R_C \]
\[\therefore A_v = \frac{V_o}{V_i} = \alpha \frac{R_C}{r_e} \approx \frac{R_C}{r_e} \]

\[I_e = I_i \]
\[I_o = -\alpha I_e = -\alpha I_i \]
\[\therefore A_i = \frac{I_o}{I_i} = -\alpha = -1 \]
Common-Base (CB) Configuration

Phase Relationship

A CB amplifier configuration has no phase shift between input and output.

Asutosh Kar, IIIT Bhubaneswar
The network has a dc feedback resistor for increased stability, yet the capacitor C_3 will shift portions of the feedback resistance to the input and output sections of the network in the ac domain. The portion of R_F shifted to the input or output side will be determined by the desired ac input and output resistance levels.
Substituting the re equivalent circuit into the ac equivalent network

Input Impedance:

\[Z_i = R_{F1} \parallel \beta r_e \]

Output Impedance:

\[Z_o = R_C \parallel R_{F2} \parallel r_o \]

\[Z_o \cong R_C \parallel R_{F2} \]

Asutosh Kar, IIIT Bhubaneswar
Collector DC Feedback Configuration

Voltage Gain

\[R' = r_o \parallel R_{F2} \parallel R_C \]

\[V_o = -\beta I_b R' \]

\[I_b = \frac{V_i}{\beta r_e} \]

\[V_o = -\beta \frac{V_i}{\beta r_e} R' \]

\[\therefore A_v = \frac{V_o}{V_i} = -\frac{r_o \parallel R_{F2} \parallel R_C}{r_e} \]

for \(r_o \geq 10R_C \),

\[\therefore A_v = \frac{V_o}{V_i} = -\frac{R_{F2} \parallel R_C}{r_e} \]

Asutosh Kar, IIIT Bhubaneswar
Collector DC Feedback Configuration

For the input side \(\text{Current Gain} \)

\[
I_b = \frac{R_F I_i}{R_F + \beta r_e} \quad \text{or} \quad \frac{I_b}{I_i} = \frac{R_F}{R_F + \beta r_e}
\]

and for the output side using \(R' = r_o \parallel R_{F2} \)

\[
I_o = \frac{R' \beta I_b}{R' + R_C} \quad \text{or} \quad \frac{I_o}{I_b} = \frac{R' \beta}{R' + R_C}
\]

the current gain ,

\[
A_i = \frac{I_o}{I_i} = \frac{I_o}{I_b} \cdot \frac{I_b}{I_i} = \frac{R' \beta}{R' + R_C} \cdot \frac{R_{F1}}{R_F + \beta r_e}
\]

\[
\therefore A_i = \frac{I_o}{I_i} \approx \frac{R' \beta R_{F1}}{(R' + R_C)(R_{F1} + \beta r_e)}
\]

since \(R_{F1} \) is usually much larger than \(\beta r_e \), \(R_{F1} + \beta r_e \approx R_{F1} \)

\[
A_i = \frac{I_o}{I_i} \approx \frac{\beta R_{F1} (r_o \parallel R_{F2})}{R_{F1} (r_o \parallel R_{F2} + R_C)}
\]

\[
\therefore A_i = \frac{I_o}{I_i} \approx \frac{\beta}{1 + \frac{R_C}{r_o \parallel R_{F2}}}
\]

or \(\therefore A_i = \frac{I_o}{I_i} = -A_v \frac{Z_i}{R_C} \)

Asutosh Kar, IIIT Bhubaneswar
Approximate Hybrid Equivalent Circuit

The h-parameters can be derived from the re model:

\[h_{ie} = \beta r_e \quad h_{ib} = r_e \]
\[h_{fe} = \beta \quad h_{fb} = -\alpha \]
\[h_{oe} = 1/ro \]

The h-parameters are also found in the specification sheet for the transistor.
Approximate Common-Emitter Equivalent Circuit

Hybrid equivalent model

re equivalent model

Asutosh Kar, IIIT Bhubaneswar
Approximate Common-Base Equivalent Circuit

Hybrid equivalent model

re equivalent model

Asutosh Kar, IIIT Bhubaneswar
Troubleshooting

1. **Check the DC bias voltages** – if not correct check power supply, resistors, transistor. Also check to ensure that the coupling capacitor between amplifier stages is OK.

2. **Check the AC voltages** – if not correct check transistor, capacitors and the loading effect of the next stage.
Practical Applications

• Audio Mixer

• Preamplifier

• Random-Noise Generator

• Sound Modulated Light Source